Desarrollan materiales flexibles nanoporosos que pasan de 3D a 2D de manera reversible

Pueden tener aplicaciones en la separación o absorción de gases, como catalizadores de reacciones químicas, en la encapsulación de fármacos, y en la absorción de residuos. Los investigadores del Instituto de Ciencia de Materiales del CSIC han desarrollado estos materiales utilizando moléculas icosaédricas de boro como ligandos.

Transformación reversible de estructuras 3D a 2D.  Científicos del Instituto de Ciencia de Materiales del CSIC han obtenido nuevos materiales que se comportan como transformers (populares robots de la ficción que cambian de forma reordenando sus piezas para transformarse de androide a robot y viceversa). Se trata de nuevos materiales nano-porosos 3D que, mediante estímulos externos, se transforman en una estructura no-porosa 2D de manera reversible. Posteriormente, los materiales pueden volver a la estructura nano-porosa 3D original cuando se invierten los estímulos, tal como se muestra en este video.

Este hallazgo, desarrollado por un equipo liderado por investigadores del Consejo Superior de Investigaciones Científicas (CSIC) y publicado en la revista Advanced Materials, puede tener aplicaciones como membranas para la separación o la absorción de gases, como catalizadores de reacciones químicas, en la encapsulación y la liberación de fármacos, y en la absorción de residuos peligrosos.

 

Los investigadores han desarrollado estos materiales utilizando moléculas icosaédricas de boro, flexibles y esféricas, como ligandos. "La forma esférica de los ligandos es el factor clave que permite a las estructuras volver a su forma original, permitiendo la reordenación de las diferentes partes y evitando el colapso de toda la estructura", según explica José Giner, del Laboratorio de Materiales Inorgánicos y Catálisis del Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC).

Laboratorio de Materiales Inorgánicos y Catálisis del ICMAB.El material pertenece a una clase de materiales cristalinos porosos formados por iones o clústeres metálicos con ligandos orgánicos que se llaman metal organic frameworks. En este estudio, se utilizan ligandos esféricos en lugar de los típicos ligandos planos, con lo cual aumenta la estabilidad de las estructuras flexibles cuando se deforman. “Este concepto se puede entender de este modo: dos capas pueden rodar una sobre la otra si están separadas por esferas, mientras que colapsan si se utilizan columnas rectas”, explica Giner. “La transformación observada se desencadena no solo por solventes orgánicos convencionales sino también por un solvente sostenible, el CO2 supercrítico, abriendo el camino a procesos más sostenibles", añade Ana López-Periago del grupo de Fluidos Supercríticos y Materiales Funcionales del ICMAB.

Como prueba de concepto para futuras aplicaciones potenciales, en este estudio se ha conseguido atrapar moléculas de fulereno y encapsularlas durante la transición reversible de 2D a 3D, mientras se está formando la estructura original. “Este proceso constituye una nueva forma de encapsular grandes moléculas que no se pueden difundir fácilmente a través del material poroso con poros más pequeños que su tamaño”, añade Giner.

La actividad científica del grupo del Laboratorio de Materiales Inorgánicos y Catálisis está centrada en la química de los clústeres de boro. Sus formas geométricas y el hecho de que contienen un elemento semi-metálico, el boro, les dan propiedades únicas aún muy desconocidas. El grupo explora la síntesis de nuevas estructuras y sus aplicaciones en diferentes campos, tales como como agentes antitumorales, en catálisis, en desalinización de agua o para sensores.

Enlace al video: https://youtu.be/eO9fMitBfFY

 

Artículo de referencia:
An Unprecedented Stimuli Controlled Single-crystal Reversible Phase Transition of a Metal-Organic Framework and its Application to a Novel Method of Guest Encapsulation. Fangchang Tan, Ana López-Periago, Mark E. Light, Jordi Cirera, Eliseo Ruiz, Alejandro Borrás, Francesc Teixidor, Clara Viñas, Concepción Domingo, José Giner Planas* Advanced Materials. May 2018. DOI: 10.1002/adma.201800726

Enllaç al vídeo / Enlace al video / Link to the video:

https://youtu.be/eO9fMitBfFY

Literatura y ciencia

concurso literatura de ciencia

El CSIC en el aula

boton csic en el aula

link actividades para profesores

Ciencia ciudadana

atrapatigre

boton observadores del mar

 

 

 

 

Portales divulgación

link a web la ciencia al teu monLogo ICMDivulga-modificado

Ciencia en la calle

Enlace a Raval 6000 anys.

BCNRocks

Revista de I+D

El CSIC con la empresa

boto-cartera-tecnologias

 

 

Usted está aquí: Home noticias notas de prensa Desarrollan materiales flexibles nanoporosos que pasan de 3D a 2D de manera reversible